


1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

Table	of	Contents
Introduction

Background

HTTP	Today

Things	done	to	overcome	latency	pains

Updating	HTTP

http2	concepts

The	http2	protocol

Extensions

An	http2	world

http2	in	Firefox

http2	in	Chromium

http2	in	curl

After	http2

Further	reading

Thanks

2



http2	explained
This	is	a	detailed	document	describing	HTTP/2	(RFC	7540),	the	background,	concepts,	protocol	and	something	about
existing	implementations	and	what	the	future	might	hold.

See	https://daniel.haxx.se/http2/	for	the	canonical	home	for	this	project.

See	https://github.com/bagder/http2-explained	for	the	source	code	of	all	book	contents.

CONTRIBUTING
I	encourage	and	welcome	help	and	contributions	from	anyone	who	may	have	improvements	to	offer.	We	accept	pull
requests,	but	you	can	also	just	file	issues	or	send	email	to	daniel-http2@haxx.se	with	your	suggestions!

/	Daniel	Stenberg

Introduction

3

https://httpwg.github.io/specs/rfc7540.html
https://daniel.haxx.se/http2/
https://github.com/bagder/http2-explained
https://github.com/bagder/http2-explained/pulls
https://github.com/bagder/http2-explained/issues


1.	Background
This	document	describes	http2	from	a	technical	and	protocol	level.	It	started	out	as	a	presentation	Daniel	did	in	Stockholm
in	April	2014	that	was	subsequently	converted	and	extended	into	a	full-blown	document	with	all	details	and	proper
explanations.

RFC	7540	is	the	official	name	of	the	final	http2	specification	and	it	was	published	on	May	15th	2015:	https://www.rfc-
editor.org/rfc/rfc7540.txt

All	and	any	errors	in	this	document	are	my	own	and	the	results	of	my	shortcomings.	Please	point	them	out	and	they	will	be
fixed	in	updated	versions.

In	this	document	I've	tried	to	consistently	use	the	word	"http2"	to	describe	the	new	protocol	while	in	pure	technical	terms,
the	proper	name	is	HTTP/2.	I	made	this	choice	for	the	sake	of	readability	and	to	get	a	better	flow	in	the	language.

1.1	Author
My	name	is	Daniel	Stenberg.	I've	been	working	with	open	source	and	networking	for	over	twenty	years	in	numerous
projects.	Possibly	I'm	best	known	for	being	the	lead	developer	of	curl	and	libcurl.	I've	been	involved	in	the	IETF	HTTPbis
working	group	for	several	years	and	there	I've	kept	up-to-date	with	the	refreshed	HTTP	1.1	work	as	well	as	being	involved
in	the	http2	standardization	work.

Email:	daniel@haxx.se

Twitter:	@bagder

Web:	daniel.haxx.se

Blog:	daniel.haxx.se/blog

1.2	Help!
If	you	find	mistakes,	omissions,	errors	or	blatant	lies	in	this	document,	please	send	me	a	refreshed	version	of	the	affected
paragraph	and	I'll	make	amended	versions.	I	will	give	proper	credits	to	everyone	who	helps	out!	I	hope	to	make	this
document	better	over	time.

This	document	is	available	at	https://daniel.haxx.se/http2

1.3	License

This	document	is	licensed	under	the	Creative	Commons	Attribution	4.0	license:
https://creativecommons.org/licenses/by/4.0/

1.4	Document	history

Background

4

https://www.rfc-editor.org/rfc/rfc7540.txt
https://twitter.com/bagder
https://daniel.haxx.se/
https://daniel.haxx.se/blog/
https://daniel.haxx.se/http2
https://creativecommons.org/licenses/by/4.0/


The	first	version	of	this	document	was	published	on	April	25th	2014.	Here	follows	the	largest	changes	in	the	most	recent
document	versions.

Version	1.13

Converted	the	master	version	of	this	document	to	Markdown	syntax
13:	Mention	more	resources,	updated	links	and	descriptions
12:	Updated	the	QUIC	description	with	reference	to	draft
8.5:	Refreshed	with	current	numbers
3.4:	The	average	is	now	40	TCP	connections
6.4:	Updated	to	reflect	what	the	spec	says

Version	1.12

1.1:	HTTP/2	is	now	in	an	official	RFC
6.5.1:	Link	to	the	HPACK	RFC
9.1:	Mention	the	Firefox	36+	config	switch	for	http2
12.1:	Added	section	about	QUIC

Version	1.11

Lots	of	language	improvements	mostly	pointed	out	by	friendly	contributors
8.3.1:	Mention	nginx	and	Apache	httpd	specific	acitivities

Version	1.10

1:	The	protocol	has	been	“okayed”
4.1:	Refreshed	the	wording	since	2014	is	last	year
Front:	Added	image	and	call	it	“http2	explained”	there,	fixed	link
1.4:	Added	document	history	section
Many	spelling	and	grammar	mistakes	corrected
14:	Added	thanks	to	bug	reporters
2.4:	Better	labels	for	the	HTTP	growth	graph
6.3:	Corrected	the	wagon	order	in	the	multiplexed	train
6.5.1:	HPACK	draft-12

Version	1.9

Updated	to	HTTP/2	draft-17	and	HPACK	draft-11
Added	section	"10.	http2	in	Chromium"	(==	one	page	longer	now)
Lots	of	spell	fixes
At	30	implementations	now
8.5:	Added	some	current	usage	numbers
8.3:	Mention	internet	explorer	too
8.3.1	Added	"missing	implementations"
8.4.3:	Mention	that	TLS	also	increases	success	rate

Background

5



2.	HTTP	today
HTTP	1.1	has	turned	into	a	protocol	used	for	virtually	everything	on	the	Internet.	Huge	investments	have	been	made	in
protocols	and	infrastructure	that	take	advantage	of	this,	to	the	extent	that	it	is	often	easier	today	to	make	things	run	on	top
of	HTTP	rather	than	building	something	new	on	its	own.

2.1	HTTP	1.1	is	huge
When	HTTP	was	created	and	thrown	out	into	the	world,	it	was	probably	perceived	as	a	rather	simple	and	straightforward
protocol,	but	time	has	proved	that	to	be	false.	HTTP	1.0	in	RFC	1945	is	a	60-page	specification	released	in	1996.	RFC
2616	that	describes	HTTP	1.1	was	released	only	three	years	later	in	1999	and	had	grown	significantly	to	176	pages.	Yet
when	we	within	IETF	worked	on	the	update	to	that	spec,	it	was	split	up	and	converted	into	six	documents	with	a	much
larger	page	count	in	total	(resulting	in	RFC	7230	and	family).	By	any	count,	HTTP	1.1	is	big	and	includes	a	myriad	of
details,	subtleties	and,	not	the	least,	a	lot	of	optional	parts.

2.2	A	world	of	options
HTTP	1.1's	nature	of	having	lots	of	tiny	details	and	options	available	for	later	extensions	has	grown	a	software	ecosystem
where	almost	no	implementation	ever	implements	everything	–	and	it	isn't	even	really	possible	to	exactly	tell	what
“everything”	is.	This	has	led	to	a	situation	where	features	that	were	initially	little-used	saw	very	few	implementations,	and
those	that	did	implement	the	features	then	saw	very	little	use	of	them.

Later	on,	this	caused	an	interoperability	problem	when	clients	and	servers	started	to	increase	the	use	of	such	features.
HTTP	pipelining	is	a	primary	example	of	such	a	feature.

2.3	Inadequate	use	of	TCP
HTTP	1.1	has	a	hard	time	really	taking	full	advantage	of	all	the	power	and	performance	that	TCP	offers.	HTTP	clients	and
browsers	have	to	be	very	creative	to	find	solutions	that	decrease	page	load	times.

Other	attempts	that	have	been	going	on	in	parallel	over	the	years	have	also	confirmed	that	TCP	is	not	that	easy	to	replace,
and	thus	we	keep	working	on	improving	both	TCP	and	the	protocols	on	top	of	it.

Simply	put,	TCP	can	be	utilized	better	to	avoid	pauses	or	wasted	intervals	that	could	have	been	used	to	send	or	receive
more	data.	The	following	sections	will	highlight	some	of	these	shortcomings.

2.4	Transfer	sizes	and	number	of	objects
When	looking	at	the	trend	for	some	of	the	most	popular	sites	on	the	web	today	and	what	it	takes	to	download	their	front
pages,	a	clear	pattern	emerges.	Over	the	years,	the	amount	of	data	that	needs	to	be	retrieved	has	gradually	risen	up	to	and
above	1.9MB.	What	is	more	important	in	this	context	is	that,	on	average,	over	100	individual	resources	are	required	to
display	each	page.

As	the	graph	below	shows,	the	trend	has	been	going	on	for	a	while,	and	there	is	little	to	no	indication	that	it	will	change
anytime	soon.	It	shows	the	growth	of	the	total	transfer	size	(in	green)	and	the	total	number	of	requests	used	on	average	(in
red)	to	serve	the	most	popular	web	sites	in	the	world,	and	how	they	have	changed	over	the	last	four	years.

HTTP	Today

6



2.5	Latency	kills

HTTP	1.1	is	very	latency	sensitive,	partly	because	HTTP	pipelining	is	still	riddled	with	enough	problems	to	remain	switched
off	to	a	large	percentage	of	users.

While	we've	seen	a	great	increase	in	available	bandwidth	to	people	over	the	last	few	years,	we	have	not	seen	the	same
level	of	improvements	in	reducing	latency.	High-latency	links,	like	many	of	the	current	mobile	technologies,	make	it	hard	to
get	a	good	and	fast	web	experience	even	if	you	have	a	really	high	bandwidth	connection.

Another	use	case	requiring	low	latency	is	certain	kinds	of	video,	like	video	conferencing,	gaming	and	similar	where	there's
not	just	a	pre-generated	stream	to	send	out.

2.6.	Head-of-line	blocking
HTTP	pipelining	is	a	way	to	send	another	request	while	waiting	for	the	response	to	a	previous	request.	It	is	very	similar	to
queuing	at	a	counter	at	the	bank	or	in	a	supermarket:	you	just	don't	know	if	the	person	in	front	of	you	is	a	quick	customer	or
that	annoying	one	that	will	take	forever	before	he/she	is	done.	This	is	known	as	head-of-line	blocking.

HTTP	Today

7



Sure,	you	can	attempt	to	pick	the	line	you	believe	is	the	correct	one,	and	at	times	you	can	even	start	a	new	line	of	your
own.	But	in	the	end,	you	can't	avoid	making	a	decision.	And	once	it	is	made,	you	cannot	switch	lines.

Creating	a	new	line	is	also	associated	with	a	performance	and	resource	penalty,	so	that's	not	scalable	beyond	a	smaller
number	of	lines.	There's	just	no	perfect	solution	to	this.

Even	today,	most	desktop	web	browsers	ship	with	HTTP	pipelining	disabled	by	default.

Additional	reading	on	this	subject	can	be	found	in	the	Firefox	bugzilla	entry	264354.

HTTP	Today

8

https://bugzilla.mozilla.org/show_bug.cgi?id=264354


3.	Things	done	to	overcome	latency	pains
When	faced	with	problems,	people	tend	to	gather	to	find	workarounds.	Some	of	the	workarounds	are	clever	and	useful,	but
others	are	just	awful	kludges.

3.1	Spriting

Spriting	is	the	term	often	used	to	describe	combining	multiple	small	images	to	form	a	single	larger	image.	Then,	using
JavaScript	or	CSS,	you	“cut	out”	pieces	of	that	big	image	to	show	smaller	individual	ones.

A	site	would	use	this	trick	for	speed.	Getting	a	single	big	image	in	HTTP	1.1	is	much	faster	than	getting	100	smaller
individual	ones.

Of	course,	this	has	its	downsides	for	the	pages	of	the	site	that	only	want	to	show	one	or	two	of	the	small	pictures.	Spriting
also	causes	all	images	to	be	removed	simultaneously	when	the	cache	is	cleared	instead	of	possibly	letting	the	most
commonly	used	ones	remain.

3.2	Inlining
Inlining	is	another	trick	used	to	avoid	sending	individual	images,	and	this	is	done	by	using	data	URLs	embedded	in	the	CSS
file.	This	has	similar	benefits	and	drawbacks	as	the	spriting	case.

.icon1	{

				background:	url(data:image/png;base64,<data>)	no-repeat;

}

.icon2	{

				background:	url(data:image/png;base64,<data>)	no-repeat;

}

3.3	Concatenation
A	big	site	can	end	up	with	a	lot	of	different	JavaScript	files.	Developers	can	use	front-end	tools	to	concatenate,	or	combine,
multiple	scripts	so	that	the	browser	will	get	a	single	big	file	instead	of	dozens	of	smaller	ones.	Too	much	data	is	sent	when
only	little	is	needed	and,	likewise,	too	much	data	needs	to	be	reloaded	when	a	change	is	made.

This	practice	is,	of	course,	mostly	an	inconvenience	to	the	developers	involved.

Things	done	to	overcome	latency	pains

9



3.4	Sharding
The	final	performance	trick	I'll	mention	is	often	referred	to	as	“sharding.”	It	basically	means	serving	aspects	of	your	service
on	as	many	different	hosts	as	possible.	At	first	glance	this	seems	strange,	but	there	is	sound	reasoning	behind	it.

Initially,	the	HTTP	1.1	specification	stated	that	a	client	was	allowed	to	use	a	maximum	of	two	TCP	connections	for	each
host.	So,	in	order	to	not	violate	the	spec,	clever	sites	simply	invented	new	host	names	and	–	voilà	–	you	could	get	more
connections	to	your	site	and	decreased	page	load	times.

Over	time	that	limitation	was	removed,	and	today	clients	easily	use	six	to	eight	connections	per	host	name.	But	they	still
have	a	limit,	so	sites	continue	to	use	this	technique	to	bump	up	the	number	of	connections.	As	the	number	of	objects
requested	over	HTTP	is	ever-increasing	–	as	I	showed	before	–	the	large	number	of	connections	is	then	used	to	make	sure
HTTP	performs	well	and	allow	your	site	to	load	quickly.	It	is	not	unusual	for	sites	to	use	well	over	50	or	even	up	to	100	or
more	connections	now	for	a	single	site	using	this	technique.	Recent	stats	from	httparchive.org	show	that	the	top	300K
URLs	in	the	world	need,	on	average,	40(!)	TCP	connections	to	display	the	site,	and	the	trend	says	this	is	still	increasing
slowly	over	time.

Another	reason	for	sharding	is	to	put	images	or	similar	resources	on	a	separate	host	name	that	doesn't	use	any	cookies,	as
the	size	of	cookies	these	days	can	be	quite	significant.	By	using	cookie-free	image	hosts,	you	can	sometimes	increase
performance	simply	by	allowing	much	smaller	HTTP	requests!

The	image	below	shows	what	a	packet	trace	looks	like	when	browsing	one	of	Sweden's	top	web	sites	and	how	requests
are	distributed	over	several	host	names.

Things	done	to	overcome	latency	pains

10



Things	done	to	overcome	latency	pains

11



4.	Updating	HTTP
Wouldn't	it	be	nice	to	make	an	improved	protocol?	It	would...

1.	 Be	less	latency	sensitive
2.	 Fix	pipelining	and	the	head	of	line	blocking	problem
3.	 Eliminate	the	need	to	keep	increasing	the	number	of	connections	to	each	host
4.	 Keep	all	existing	interfaces,	all	content,	the	URI	formats	and	schemes
5.	 Be	made	within	the	IETF's	HTTPbis	working	group

4.1.	IETF	and	the	HTTPbis	working	group
The	Internet	Engineering	Task	Force	(IETF)	is	an	organization	that	develops	and	promotes	internet	standards,	mostly	on
the	protocol	level.	They're	widely	known	for	the	RFC	series	of	memos	documenting	everything	from	TCP,	DNS,	and	FTP,	to
best	practices,	HTTP,	and	numerous	protocol	variants	that	never	went	anywhere.

Within	IETF,	dedicated	“working	groups”	are	formed	with	a	limited	scope	to	work	toward	a	goal.	They	establish	a	“charter”
with	some	set	guidelines	and	limitations	for	what	they	should	produce.	Everyone	and	anyone	is	allowed	to	join	in	the
discussions	and	development.	Everyone	who	attends	and	says	something	has	the	same	weight	and	chance	to	affect	the
outcome	and	everyone	is	counted	as	an	individual,	with	little	regard	to	which	company	they	work	for.

The	HTTPbis	working	group	(see	later	for	an	explanation	of	the	name)	was	formed	during	the	summer	of	2007	and	tasked
with	creating	an	update	of	the	HTTP	1.1	specification.	Within	this	group	the	discussions	about	a	next-version	HTTP	really
started	during	late	2012.	The	HTTP	1.1	updating	work	was	completed	early	2014	and	resulted	in	the	RFC	7230	series.

The	final	inter-op	meeting	for	the	HTTPbis	WG	was	held	in	New	York	City	in	the	beginning	of	June	2014.	The	remaining
discussions	and	the	IETF	procedures	performed	to	actually	get	the	official	RFC	out	continued	into	the	following	year.

Some	of	the	bigger	players	in	the	HTTP	field	have	been	missing	from	the	working	group	discussions	and	meetings.	I	don't
want	to	mention	any	particular	company	or	product	names	here,	but	clearly	some	actors	on	the	Internet	today	seem	to	be
confident	that	IETF	will	do	good	without	these	companies	being	involved...

4.1.1.	The	"bis"	part	of	the	name

The	group	is	named	HTTPbis	where	the	"bis"	part	comes	from	the	Latin	adverb	for	two.	Bis	is	commonly	used	as	a	suffix	or
part	of	the	name	within	the	IETF	for	an	update	or	the	second	take	on	a	spec;	in	this	case,	the	update	to	HTTP	1.1.

4.2.	http2	started	from	SPDY
SPDY	is	a	protocol	that	was	developed	and	spearheaded	by	Google.	They	certainly	developed	it	in	the	open	and	invited
everyone	to	participate	but	it	was	obvious	that	they	benefited	by	being	in	control	over	both	a	popular	browser
implementation	and	a	significant	server	population	with	well-used	services.

When	the	HTTPbis	group	decided	it	was	time	to	start	working	on	http2,	SPDY	had	already	proven	that	it	was	a	working
concept.	It	had	shown	it	was	possible	to	deploy	on	the	Internet	and	there	were	published	numbers	that	proved	how	well	it
performed.	The	http2	work	began	with	the	SPDY/3	draft	that	was	basically	made	into	the	http2	draft-00	with	a	little	search
and	replace.

Updating	HTTP

12

https://tools.ietf.org/html/rfc7230
https://en.wiktionary.org/wiki/bis#Latin
https://en.wikipedia.org/wiki/SPDY


5.	http2	concepts
So	what	does	http2	accomplish?	Where	are	the	boundaries	for	what	the	HTTPbis	group	set	out	to	do?

The	boundaries	were	actually	quite	strict	and	put	many	restraints	on	the	team's	ability	to	innovate:

http2	has	to	maintain	HTTP	paradigms.	It	is	still	a	protocol	where	the	client	sends	requests	to	the	server	over	TCP.

http://	and	https://	URLs	cannot	be	changed.	There	can	be	no	new	scheme	for	this.	The	amount	of	content	using	such
URLs	is	too	big	to	expect	them	to	change.

HTTP1	servers	and	clients	will	be	around	for	decades,	we	need	to	be	able	to	proxy	them	to	http2	servers.

Subsequently,	proxies	must	be	able	to	map	http2	features	to	HTTP	1.1	clients	one-to-one.

Remove	or	reduce	optional	parts	from	the	protocol.	This	wasn't	really	a	requirement	but	more	a	mantra	coming	from
SPDY	and	the	Google	team.	By	making	sure	everything	is	mandatory	there's	no	way	you	can	not	implement	anything
now	and	fall	into	a	trap	later	on.

No	more	minor	version.	It	was	decided	that	clients	and	servers	are	either	compatible	with	http2	or	they	are	not.	If	a
need	arises	to	extend	the	protocol	or	modify	things,	then	http3	will	be	born.	There	are	no	more	minor	versions	in	http2.

5.1.	http2	for	existing	URI	schemes
As	mentioned	already,	the	existing	URI	schemes	cannot	be	modified,	so	http2	must	use	the	existing	ones.	Since	they	are
used	for	HTTP	1.x	today,	we	obviously	need	a	way	to	upgrade	the	protocol	to	http2,	or	otherwise	ask	the	server	to	use
http2	instead	of	older	protocols.

HTTP	1.1	has	a	defined	way	to	do	this,	namely	the	Upgrade:	header,	which	allows	the	server	to	send	back	a	response
using	the	new	protocol	when	getting	such	a	request	over	the	old	protocol,	at	the	cost	of	an	additional	round-trip.

That	round-trip	penalty	was	not	something	the	SPDY	team	would	accept,	and	since	they	only	implemented	SPDY	over
TLS,	they	developed	a	new	TLS	extension	which	shortcuts	the	negotiation	significantly.	Using	this	extension,	called	NPN
for	Next	Protocol	Negotiation,	the	server	tells	the	client	which	protocols	it	knows	and	the	client	can	then	use	the	protocol	it
prefers.

5.2.	http2	for	https://
A	lot	of	focus	of	http2	has	been	to	make	it	behave	properly	over	TLS.	SPDY	requires	TLS	and	there's	been	a	strong	push
for	making	TLS	mandatory	for	http2,	but	it	didn't	get	consensus	so	http2	shipped	with	TLS	as	optional.	However,	two
prominent	implementers	have	stated	clearly	that	they	will	only	implement	http2	over	TLS:	the	Mozilla	Firefox	lead	and	the
Google	Chrome	lead,	two	of	today's	leading	web	browsers.

Reasons	for	choosing	TLS-only	include	respect	for	user's	privacy	and	early	measurements	showing	that	the	new	protocols
have	a	higher	success	rate	when	done	with	TLS.	This	is	because	of	the	widespread	assumption	that	anything	that	goes
over	port	80	is	HTTP	1.1,	which	makes	some	middle-boxes	interfere	with	or	destroy	traffic	when	any	other	protocols	are
used	on	that	port.

The	subject	of	mandatory	TLS	has	caused	much	hand-wringing	and	agitated	voices	in	mailing	lists	and	meetings	–	is	it
good	or	is	it	evil?	It	is	a	highly	controversial	topic	–	be	aware	of	this	when	you	throw	this	question	in	the	face	of	an	HTTPbis
participant!

Similarly,	there's	been	a	fierce	and	long-running	debate	about	whether	http2	should	dictate	a	list	of	ciphers	that	should	be
mandatory	when	using	TLS,	or	if	it	should	perhaps	blacklist	a	set,	or	if	it	shouldn't	require	anything	at	all	from	the	TLS
“layer”	but	leave	that	to	the	TLS	working	group.	The	spec	ended	up	specifying	that	TLS	should	be	at	least	version	1.2	and

http2	concepts

13



there	are	cipher	suite	restrictions.

5.3.	http2	negotiation	over	TLS
Next	Protocol	Negotiation	(NPN)	is	the	protocol	used	to	negotiate	SPDY	with	TLS	servers.	As	it	wasn't	a	proper	standard,	it
was	taken	through	the	IETF	and	the	result	was	ALPN:	Application	Layer	Protocol	Negotiation.	ALPN	is	being	promoted	for
use	by	http2,	while	SPDY	clients	and	servers	still	use	NPN.

The	fact	that	NPN	existed	first	and	ALPN	has	taken	a	while	to	go	through	standardization	has	led	to	many	early	http2
clients	and	http2	servers	implementing	and	using	both	these	extensions	when	negotiating	http2.	Also,	NPN	is	what's	used
for	SPDY	and	many	servers	offer	both	SPDY	and	http2,	so	supporting	both	NPN	and	ALPN	on	those	servers	makes	perfect
sense.

ALPN	differs	from	NPN	primarily	in	who	decides	what	protocol	to	speak.	With	ALPN,	the	client	gives	the	server	a	list	of
protocols	in	its	order	of	preference	and	the	server	picks	the	one	it	wants,	while	with	NPN	the	client	makes	the	final	choice.

5.4.	http2	for	http://
As	previously	mentioned,	for	plain-text	HTTP	1.1	the	way	to	negotiate	http2	is	by	presenting	the	server	with	an	Upgrade:
header.	If	the	server	speaks	http2	it	responds	with	a	“101	Switching”	status	and	from	then	on	it	speaks	http2	on	that
connection.	Of	course	this	upgrade	procedure	costs	a	full	network	round-trip,	but	the	upside	is	that	it's	generally	possible	to
keep	an	http2	connection	alive	much	longer	and	re-use	it	more	than	a	typical	HTTP1	connection.

While	some	browsers'	spokespersons	stated	they	will	not	implement	this	means	of	speaking	http2,	the	Internet	Explorer
team	once	expressed	that	they	would	-	although	they	have	never	delivered	on	that.	curl	and	a	few	other	non-browser
clients	support	clear-text	http2.

Today,	no	major	browser	supports	http2	without	TLS.

http2	concepts

14



6.	The	http2	protocol
Enough	about	the	background,	the	history	and	politics	behind	what	got	us	here.	Let's	dive	into	the	specifics	of	the	protocol:
the	bits	and	the	concepts	that	make	up	http2.

6.1.	Binary
http2	is	a	binary	protocol.

Just	let	that	sink	in	for	a	minute.	If	you've	been	involved	in	internet	protocols	before,	chances	are	that	you	will	now	be
instinctively	reacting	against	this	choice,	marshaling	your	arguments	that	spell	out	how	protocols	based	on	text/ascii	are
superior	because	humans	can	handcraft	requests	over	telnet	and	so	on...

http2	is	binary	to	make	the	framing	much	easier.	Figuring	out	the	start	and	the	end	of	frames	is	one	of	the	really
complicated	things	in	HTTP	1.1	and,	actually,	in	text-based	protocols	in	general.	By	moving	away	from	optional	white	space
and	different	ways	to	write	the	same	thing,	implementation	becomes	simpler.

Also,	it	makes	it	much	easier	to	separate	the	actual	protocol	parts	from	the	framing	-	which	in	HTTP1	is	confusingly
intermixed.

The	fact	that	the	protocol	features	compression	and	will	often	run	over	TLS	also	diminishes	the	value	of	text,	since	you
won't	see	text	over	the	wire	anyway.	We	simply	have	to	get	used	to	the	idea	of	using	something	like	a	Wireshark	inspector
to	figure	out	exactly	what's	going	on	at	the	protocol	level	in	http2.

Debugging	this	protocol	will	probably	have	to	be	done	with	tools	like	curl,	or	by	analyzing	the	network	stream	with
Wireshark's	http2	dissector	and	similar.

6.2.	The	binary	format

http2	sends	binary	frames.	There	are	different	frame	types	that	can	be	sent	and	they	all	have	the	same	setup:	Length,
Type,	Flags,	Stream	Identifier,	and	frame	payload.

There	are	ten	different	frame	types	defined	in	the	http2	spec	and	perhaps	the	two	most	fundamental	ones	that	map	to
HTTP	1.1	features	are	DATA	and	HEADERS.	I'll	describe	some	of	the	frames	in	more	detail	further	on.

6.3.	Multiplexed	streams
The	Stream	Identifier	mentioned	in	the	previous	section	associates	each	frame	sent	over	http2	with	a	“stream”.	A	stream	is
an	independent,	bi-directional	sequence	of	frames	exchanged	between	the	client	and	server	within	an	http2	connection.

The	http2	protocol

15



A	single	http2	connection	can	contain	multiple	concurrently-open	streams,	with	either	endpoint	interleaving	frames	from
multiple	streams.	Streams	can	be	established	and	used	unilaterally	or	shared	by	either	the	client	or	server	and	they	can	be
closed	by	either	endpoint.	The	order	in	which	frames	are	sent	within	a	stream	is	significant.	Recipients	process	frames	in
the	order	they	are	received.

Multiplexing	the	streams	means	that	packages	from	many	streams	are	mixed	over	the	same	connection.	Two	(or	more)
individual	trains	of	data	are	made	into	a	single	one	and	then	split	up	again	on	the	other	side.	Here	are	two	trains:

The	two	trains	multiplexed	over	the	same	connection:

6.4.	Priorities	and	dependencies
Each	stream	also	has	a	priority	(also	known	as	“weight”),	which	is	used	to	tell	the	peer	which	streams	to	consider	most
important,	in	case	there	are	resource	restraints	that	force	the	server	to	select	which	streams	to	send	first.

Using	the	PRIORITY	frame,	a	client	can	also	tell	the	server	which	other	stream	this	stream	depends	on.	It	allows	a	client	to
build	a	priority	“tree”	where	several	“child	streams”	may	depend	on	the	completion	of	“parent	streams”.

The	http2	protocol

16



The	priority	weights	and	dependencies	can	be	changed	dynamically	at	run-time,	which	should	enable	browsers	to	make
sure	that	when	users	scroll	down	a	page	full	of	images,	the	browser	can	specify	which	images	are	most	important,	or	if	you
switch	tabs	it	can	prioritize	a	new	set	of	streams	that	suddenly	come	into	focus.

6.5.	Header	compression
HTTP	is	a	stateless	protocol.	In	short,	this	means	that	every	request	needs	to	bring	with	it	as	much	detail	as	the	server
needs	to	serve	that	request,	without	the	server	having	to	store	a	lot	of	info	and	meta-data	from	previous	requests.	Since
http2	doesn't	change	this	paradigm,	it	has	to	work	the	same	way.

This	makes	HTTP	repetitive.	When	a	client	asks	for	many	resources	from	the	same	server,	like	images	from	a	web	page,
there	will	be	a	large	series	of	requests	that	all	look	almost	identical.	A	series	of	almost	identical	somethings	begs	for
compression.

While	the	number	of	objects	per	web	page	has	increased	(as	mentioned	earlier),	the	use	of	cookies	and	the	size	of	the
requests	have	also	kept	growing	over	time.	Cookies	also	need	to	be	included	in	all	requests,	often	the	same	ones	in
multiple	requests.

The	HTTP	1.1	request	sizes	have	actually	gotten	so	large	that	they	sometimes	end	up	larger	than	the	initial	TCP	window,
which	makes	them	very	slow	to	send	as	they	need	a	full	round-trip	to	get	an	ACK	back	from	the	server	before	the	full
request	has	been	sent.	This	is	another	argument	for	compression.

6.5.1.	Compression	is	a	tricky	subject

HTTPS	and	SPDY	compression	were	found	to	be	vulnerable	to	the	BREACH	and	CRIME	attacks.	By	inserting	known	text
into	the	stream	and	figuring	out	how	that	changes	the	output,	an	attacker	can	figure	out	what's	being	sent	in	an	encrypted
payload.

Doing	compression	on	dynamic	content	for	a	protocol	-	without	becoming	vulnerable	to	one	of	these	attacks	-	requires
some	thought	and	careful	consideration.	This	is	what	the	HTTPbis	team	tried	to	do.

Enter	HPACK,	Header	Compression	for	HTTP/2,	which	–	as	the	name	suggests	-	is	a	compression	format	especially
crafted	for	http2	headers,	and	it	is	being	specified	in	a	separate	internet	draft.	The	new	format,	together	with	other	counter-
measures	(such	as	a	bit	that	asks	intermediaries	to	not	compress	a	specific	header	and	optional	padding	of	frames),	should
make	it	harder	to	exploit	compression.

In	the	words	of	Roberto	Peon	(one	of	the	creators	of	HPACK):

“HPACK	was	designed	to	make	it	difficult	for	a	conforming	implementation	to	leak	information,	to	make	encoding	and
decoding	very	fast/cheap,	to	provide	for	receiver	control	over	compression	context	size,	to	allow	for	proxy	re-indexing
(i.e.,	shared	state	between	frontend	and	backend	within	a	proxy),	and	for	quick	comparisons	of	Huffman-encoded
strings”.

6.6.	Reset	-	change	your	mind
One	of	the	drawbacks	with	HTTP	1.1	is	that	when	an	HTTP	message	has	been	sent	off	with	a	Content-Length	of	a	certain
size,	you	can't	easily	just	stop	it.	Sure,	you	can	often	(but	not	always)	disconnect	the	TCP	connection,	but	that	comes	at	the
cost	of	having	to	negotiate	a	new	TCP	handshake	again.

A	better	solution	would	be	to	just	stop	the	message	and	start	anew.	This	can	be	done	with	http2's	RST_STREAM	frame
which	will	help	prevent	wasted	bandwidth	and	the	need	to	tear	down	connections.

6.7.	Server	push

The	http2	protocol

17

https://en.wikipedia.org/wiki/BREACH_%28security_exploit%29
https://en.wikipedia.org/wiki/CRIME
https://www.rfc-editor.org/rfc/rfc7541.txt


This	is	the	feature	also	known	as	“cache	push”.	The	idea	is	that	if	the	client	asks	for	resource	X,	the	server	may	know	that
the	client	will	probably	want	resource	Z	as	well,	and	sends	it	to	the	client	without	being	asked.	It	helps	the	client	by	putting	Z
into	its	cache	so	that	it	will	be	there	when	it	wants	it.

Server	push	is	something	a	client	must	explicitly	allow	the	server	to	do.	Even	then,	the	client	can	swiftly	terminate	a	pushed
stream	at	any	time	with	RST_STREAM	should	it	not	want	a	particular	resource.

6.8.	Flow	Control
Each	individual	http2	stream	has	its	own	advertised	flow	window	that	the	other	end	is	allowed	to	send	data	for.	If	you
happen	to	know	how	SSH	works,	this	is	very	similar	in	style	and	spirit.

For	every	stream,	both	ends	have	to	tell	the	peer	that	it	has	enough	room	to	handle	incoming	data,	and	the	other	end	is
only	allowed	to	send	that	much	data	until	the	window	is	extended.	Only	DATA	frames	are	flow	controlled.

The	http2	protocol

18



7.	Extensions
The	http2	protocol	mandates	that	a	receiver	must	read	and	ignore	all	unknown	frames	(those	with	an	unknown	frame	type).
Two	parties	can	negotiate	the	use	of	new	frame	types	on	a	hop-by-hop	basis,	but	those	frames	aren't	allowed	to	change
state	and	they	will	not	be	flow	controlled.

The	subject	of	whether	http2	should	allow	extensions	at	all	was	debated	at	length	during	the	protocol's	development	with
opinions	swinging	for	and	against.	After	draft-12	the	pendulum	swung	back	one	last	time	and	extensions	were	ultimately
allowed.

Extensions	are	not	part	of	the	actual	protocol	but	will	be	documented	outside	of	the	core	protocol	spec.	There	are	already
two	frame	types	that	have	been	discussed	for	inclusion	in	the	protocol	that	will	probably	be	the	first	frames	sent	as
extensions.	I'll	describe	them	here	because	of	their	popularity	and	previous	state	as	“native”	frames:

7.1.	Alternative	Services
With	the	adoption	of	http2,	there	are	reasons	to	suspect	that	TCP	connections	will	be	much	lengthier	and	be	kept	alive
much	longer	than	HTTP	1.x	connections	have	been.	A	client	should	be	able	to	do	a	lot	of	what	it	wants	with	a	single
connection	to	each	host/site,	and	that	connection	could	potentially	be	open	for	quite	some	time.

This	will	affect	how	HTTP	load	balancers	work	and	there	may	arise	situations	when	a	site	wants	to	suggest	that	the	client
connect	to	another	host.	It	could	be	for	performance	reasons,	or	if	a	site	is	being	taken	down	for	maintenance,	etc.

The	server	will	send	the	Alt-Svc:	header	(or	ALTSVC	frame	with	http2)	telling	the	client	about	an	alternative	service:	another
route	to	the	same	content,	using	another	service,	host,	and	port	number.

A	client	should	then	attempt	to	connect	to	that	service	asynchronously	and	only	use	the	alternative	if	the	new	connection
succeeds.

7.1.1.	Opportunistic	TLS

The	Alt-Svc	header	allows	a	server	that	provides	content	over	http://	to	inform	the	client	that	the	same	content	is	also
available	over	a	TLS	connection.

This	is	a	somewhat	debatable	feature.	Such	a	connection	would	do	unauthenticated	TLS	and	wouldn't	be	advertized	as
“secure”	anywhere,	wouldn't	use	any	padlock	in	the	UI,	and	in	fact	there	is	no	way	to	tell	the	user	that	it	isn't	plain	old	HTTP,
but	this	is	still	opportunistic	TLS	and	some	people	are	very	firmly	against	this	concept.

7.2.	Blocked
A	frame	of	this	type	is	meant	to	be	sent	exactly	once	by	an	http2	party	when	it	has	data	to	send	off	but	flow	control	forbids	it
to	send	any	data.	The	idea	is	that	if	your	implementation	receives	this	frame	you	know	you	have	messed	up	something
and/or	you're	getting	less	than	perfect	transfer	speeds.

A	quote	from	draft-12,	before	this	frame	was	moved	out	to	become	an	extension:

“The	BLOCKED	frame	is	included	in	this	draft	version	to	facilitate	experimentation.	If	the	results	of	the	experiment	do
not	provide	positive	feedback,	it	could	be	removed”

Extensions

19

https://tools.ietf.org/html/draft-ietf-httpbis-alt-svc-10


8.	An	http2	world
So	what	will	things	look	like	when	http2	gets	adopted?	Will	it	get	adopted?

8.1.	How	will	http2	affect	ordinary	humans?
http2	is	not	yet	widely	deployed	nor	used.	We	can't	tell	for	sure	exactly	how	things	will	turn	out.	We	have	seen	how	SPDY
has	been	used	and	we	can	make	some	guesses	and	calculations	based	on	that	and	other	past	and	current	experiments.

http2	reduces	the	number	of	necessary	network	round-trips	and	it	avoids	the	head	of	line	blocking	dilemma	completely	with
multiplexing	and	fast	discarding	of	unwanted	streams.

It	allows	a	large	amount	of	parallel	streams	that	go	way	over	even	the	most	sharded	sites	of	today.

With	priorities	used	properly	on	the	streams,	chances	are	much	better	that	clients	will	actually	get	the	important	data	before
the	less	important	data.	All	this	taken	together,	I'd	say	that	the	chances	are	very	good	that	this	will	lead	to	faster	page	loads
and	to	more	responsive	web	sites.	Shortly	put:	a	better	web	experience.

How	much	faster	and	how	much	improvement	we	will	see,	I	don't	think	we	can	say	yet.	First,	the	technology	is	still	very
early	and	then	we	haven't	even	started	to	see	clients	and	servers	trim	implementations	to	really	take	advantage	of	all	the
powers	this	new	protocol	offers.

8.2.	How	will	http2	affect	web	development?
Over	the	years	web	developers	and	web	development	environments	have	gathered	a	full	toolbox	of	tricks	and	tools	to	work
around	problems	with	HTTP	1.1,	recall	that	I	outlined	some	of	them	in	the	beginning	of	this	document	as	a	justification	for
http2.

Lots	of	those	workarounds	that	tools	and	developers	now	use	by	default	and	without	thinking,	will	probably	hurt	http2
performance	or	at	least	not	really	take	advantage	of	http2's	new	super	powers.	Spriting	and	inlining	should	most	likely	not
be	done	with	http2.	Sharding	will	probably	be	detrimental	to	http2	as	it	will	probably	benefit	from	using	fewer	connections.

A	problem	here	is	of	course	that	web	sites	and	web	developers	need	to	develop	and	deploy	for	a	world	that	in	the	short
term	at	least,	will	have	both	HTTP1.1	and	http2	clients	as	users	and	to	get	maximum	performance	for	all	users	can	be
challenging	without	having	to	offer	two	different	front-ends.

For	these	reasons	alone,	I	suspect	there	will	be	some	time	before	we	will	see	the	full	potential	of	http2	being	reached.

8.3.	http2	implementations
Trying	to	document	specific	implementations	in	a	document	such	as	this	is	of	course	completely	futile	and	doomed	to	fail
and	only	feel	outdated	within	a	really	short	period	of	time.	Instead	I'll	explain	the	situation	in	broader	terms	and	refer
readers	to	the	list	of	implementations	on	the	http2	web	site.

There	were	a	large	number	of	implementations	early	on,	and	the	amount	has	increased	over	time	during	the	http2	work.	At
the	time	of	writing	this	there	are	over	40	implementations	listed,	and	most	of	them	implement	the	final	version.

8.3.1	Browsers

Firefox	has	been	the	browser	that's	been	on	top	of	the	bleeding	edge	drafts,	Twitter	has	kept	up	and	offered	its	services
over	http2.	Google	started	during	April	2014	to	offer	http2	support	on	a	few	test	servers	running	their	services	and	since
May	2014	they	offer	http2	support	in	their	development	versions	of	Chrome.	Microsoft	has	shown	a	tech	preview	with	http2

An	http2	world

20

https://github.com/http2/http2-spec/wiki/Implementations


support	for	their	next	Internet	Explorer	version.	Safari	(with	iOS	9	and	Mac	OS	X	El	Capitan)	and	Opera	have	both	said
they	will	support	http2.

8.3.2	Servers

There	are	already	many	server	implementations	of	http2.

The	popular	Nginx	server	offers	http2	support	with	since	1.9.5	released	on	September	22,	2015	(where	it	replaces	the
SPDY	module,	so	they	cannot	both	run	in	the	same	server	instance).

Apache's	httpd	server	has	a	http2	module	mod_http2	since	2.4.17	which	was	released	on	October	9,	2015.

H2O,	Apache	Traffic	Server,	nghttp2,	Caddy	and	LiteSpeed	have	all	released	http2	capable	servers.

8.3.3	Others

curl	and	libcurl	support	insecure	http2	as	well	as	the	TLS	based	one	using	one	out	of	several	different	TLS	libraries.

Wireshark	supports	http2.	The	perfect	tool	for	analyzing	http2	network	traffic.

8.4.	Common	critiques	of	http2
During	the	development	of	this	protocol	the	debate	has	been	going	back	and	forth	and	of	course	there	is	a	certain	amount
of	people	who	believe	this	protocol	ended	up	completely	wrong.	I	wanted	to	mention	a	few	of	the	more	common	complaints
and	mention	the	arguments	against	them:

8.4.1.	“The	protocol	is	designed	or	made	by	Google”
It	also	has	variations	implying	that	the	world	gets	even	further	dependent	or	controlled	by	Google	by	this.	This	isn't	true.
The	protocol	was	developed	within	the	IETF	in	the	same	manner	that	protocols	have	been	developed	for	over	30	years.
However,	we	all	recognize	and	acknowledge	Google's	impressive	work	with	SPDY	that	not	only	proved	that	it	is	possible	to
deploy	a	new	protocol	this	way	but	also	provided	numbers	illustrating	what	gains	could	be	made.

Google	publicly	announced	that	they	would	remove	support	for	SPDY	and	NPN	from	Chrome	in	2016	and	urged	servers	to
migrate	to	HTTP/2	instead.	In	Feburary	of	2016	they	announced	that	SPDY	and	NPN	would	finally	be	removed	in	Chrome
51.	Since	Chrome	51,	it	has	shipped	without	SPDY	and	NPN	support.

8.4.2.	“The	protocol	is	only	useful	for	browsers”

This	is	sort	of	true.	One	of	the	primary	drivers	behind	the	http2	development	is	the	fixing	of	HTTP	pipelining.	If	your	use
case	originally	didn't	have	any	need	for	pipelining	then	chances	are	http2	won't	do	a	lot	of	good	for	you.	It	certainly	isn't	the
only	improvement	in	the	protocol	but	a	big	one.

As	soon	as	services	start	realizing	the	full	power	and	abilities	the	multiplexed	streams	over	a	single	connection	brings,	I
suspect	we	will	see	more	application	use	of	http2.

Small	REST	APIs	and	simpler	programmatic	uses	of	HTTP	1.x	may	not	find	the	step	to	http2	to	offer	very	big	benefits.	But
also,	there	should	be	very	few	downsides	with	http2	for	most	users.

8.4.3.	“The	protocol	is	only	useful	for	big	sites”

Not	at	all.	The	multiplexing	capabilities	will	greatly	help	to	improve	the	experience	for	high	latency	connections	that	smaller
sites	without	wide	geographical	distributions	often	offer.	Large	sites	are	already	very	often	faster	and	more	distributed	with
shorter	round-trip	times	to	users.

8.4.4.	“Its	use	of	TLS	makes	it	slower”

An	http2	world

21

https://www.nginx.com/blog/nginx-1-9-5/
https://httpd.apache.org/docs/2.4/mod/mod_http2.html
https://h2o.examp1e.net/
https://trafficserver.apache.org/
https://nghttp2.org/
https://caddyserver.com/
https://www.litespeedtech.com/products/litespeed-web-server/overview
https://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html
https://blog.chromium.org/2016/02/transitioning-from-spdy-to-http2.html


This	can	be	true	to	some	extent.	The	TLS	handshake	does	add	a	little	extra,	but	there	are	existing	and	ongoing	efforts	on
reducing	the	necessary	round-trips	even	more	for	TLS.	The	overhead	for	doing	TLS	over	the	wire	instead	of	plain-text	is	not
insignificant	and	clearly	notable	so	more	CPU	and	power	will	be	spent	on	the	same	traffic	pattern	as	a	non-secure	protocol.
How	much	and	what	impact	it	will	have	is	a	subject	of	opinions	and	measurements.	See	for	example	istlsfastyet.com	for
one	source	of	info.

Telecom	and	other	network	operators,	for	example	in	the	ATIS	Open	Web	Alliance,	say	that	they	need	unencrypted	traffic	to
offer	caching,	compression	and	other	techniques	necessary	to	provide	a	fast	web	experience	over	satellite,	in	airplanes	and
similar.	http2	does	not	make	TLS	use	mandatory	so	we	shouldn't	conflate	the	terms.

Many	Internet	users	have	expressed	a	preference	for	TLS	to	be	used	more	widely	and	we	should	help	to	protect	users'
privacy.

Experiments	have	also	shown	that	by	using	TLS,	there	is	a	higher	degree	of	success	than	when	implementing	new	plain-
text	protocols	over	port	80	as	there	are	just	too	many	middle	boxes	out	in	the	world	that	interfere	with	what	they	would	think
is	HTTP	1.1	if	it	goes	over	port	80	and	might	look	like	HTTP	at	times.

Finally,	thanks	to	http2's	multiplexed	streams	over	a	single	connection,	normal	browser	use	cases	still	could	end	up	doing
substantially	fewer	TLS	handshakes	and	thus	perform	faster	than	HTTPS	would	when	still	using	HTTP	1.1.

8.4.5.	“Not	being	ASCII	is	a	deal-breaker”
Yes,	we	like	being	able	to	see	protocols	in	the	clear	since	it	makes	debugging	and	tracing	easier.	But	text	based	protocols
are	also	more	error	prone	and	open	up	for	much	more	parsing	and	parsing	problems.

If	you	really	can't	take	a	binary	protocol,	then	you	couldn't	handle	TLS	and	compression	in	HTTP	1.x	either	and	its	been
there	and	used	for	a	very	long	time.

8.4.6.	“It	isn't	any	faster	than	HTTP/1.1”

This	is	of	course	subject	to	debate	and	discussions	on	how	to	measure	what	faster	means,	but	already	in	the	SPDY	days
many	tests	were	performed	that	proved	browser	page	loads	were	faster	(like	"How	Speedy	is	SPDY?"	by	people	at
University	of	Washington	and	"Evaluating	the	Performance	of	SPDY-enabled	Web	Servers"	by	Hervé	Servy)	and	such
experiments	have	been	repeated	with	http2	as	well.	I'm	looking	forward	to	seeing	more	such	tests	and	experiments	getting
published.	A	basic	first	test	made	by	httpwatch.com	might	imply	that	HTTP/2	holds	its	promises.

8.4.7.	“It	has	layering	violations”

Seriously,	that's	your	argument?	Layers	are	not	holy	untouchable	pillars	of	a	global	religion	and	if	we've	crossed	into	a	few
gray	areas	when	making	http2	it	has	been	in	the	interest	of	making	a	good	and	effective	protocol	within	the	given
constraints.

8.4.8.	“It	doesn't	fix	several	HTTP/1.1	shortcomings”

That's	true.	With	the	specific	goal	of	maintaining	HTTP/1.1	paradigms	there	were	several	old	HTTP	features	that	had	to
remain,	such	as	the	common	headers	that	also	include	the	often	dreaded	cookies,	authorization	headers	and	more.	But	the
upside	of	maintaining	these	paradigms	is	that	we	got	a	protocol	that	is	possible	to	deploy	without	an	inconceivable	amount
of	upgrade	work	that	requires	fundamental	parts	to	be	completely	replaced	or	rewritten.	Http2	is	basically	just	a	new
framing	layer.

8.5.	Will	http2	become	widely	deployed?
(This	section	was	written	in	2015	and	shows	the	state	of	affairs	back	then.	Things	have	moved	and	developed	significantly
since.)

It	is	too	early	to	tell	for	sure,	but	I	can	still	guess	and	estimate	and	that's	what	I'll	do	here.

An	http2	world

22

https://istlsfastyet.com/
https://www.atis.org/openweballiance/docs/OWAKickoffSlides051414.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-wang_xiao_sophia.pdf
https://www.neotys.com/blog/performance-of-spdy-enabled-web-servers
https://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-of-https-spdy-and-http2


The	naysayers	will	say	“look	at	how	good	IPv6	has	done”	as	an	example	of	a	new	protocol	that's	taken	decades	to	just	start
to	get	widely	deployed.	http2	is	not	an	IPv6	though.	This	is	a	protocol	on	top	of	TCP	using	the	ordinary	HTTP	update
mechanisms	and	port	numbers	and	TLS	etc.	It	will	not	require	most	routers	or	firewalls	to	change	at	all.

Google	proved	to	the	world	with	their	SPDY	work	that	a	new	protocol	like	this	can	be	deployed	and	used	by	browsers	and
services	with	multiple	implementations	in	a	fairly	short	amount	of	time.	While	the	amount	of	servers	on	the	Internet	that	offer
SPDY	today	is	in	the	1%	range,	the	amount	of	data	those	servers	deal	with	is	much	larger.	Some	of	the	absolutely	most
popular	web	sites	today	offer	SPDY.

http2,	based	on	the	same	basic	paradigms	as	SPDY,	I	would	say	is	likely	to	be	deployed	even	more	since	it	is	an	IETF
protocol.	SPDY	deployment	was	always	held	back	a	bit	by	the	“it	is	a	Google	protocol”	stigma.

There	are	several	big	browsers	behind	the	roll-out.	Representatives	from	Firefox,	Chrome,	Safari,	Internet	Explorer	and
Opera	have	expressed	they	will	ship	http2	capable	browsers	and	they	have	shown	working	implementations.

There	are	several	big	server	operators	that	are	likely	to	offer	http2	soon,	including	Google,	Twitter	and	Facebook	and	we
hope	to	see	http2	support	soon	get	added	to	popular	server	implementations	such	as	the	Apache	HTTP	Server	and	nginx.
H2o	is	a	new	blazingly	fast	HTTP	server	with	http2	support	that	shows	potential.

Some	of	the	biggest	proxy	vendors,	including	HAProxy,	Squid	and	Varnish	have	expressed	their	intentions	to	support	http2.

All	throughout	2015,	the	amount	of	http2	traffic	has	been	increasing.	In	early	September,	Firefox	40	usage	was	at	13%	out
of	all	HTTP	traffic	and	27%	out	of	all	HTTPS	traffic,	while	Google	sees	roughly	18%	of	incoming	request	as	HTTP/2.	It
should	be	noted	that	Google	runs	other	new	protocol	experiments	as	well	(see	QUIC	in	12.1)	which	makes	the	http2	usage
levels	lower	than	it	could	otherwise	be.

An	http2	world

23



9.	http2	in	Firefox
Firefox	has	been	tracking	the	drafts	very	closely	and	has	provided	http2	test	implementations	for	many	months.	During	the
development	of	the	http2	protocol,	clients	and	servers	have	to	agree	on	what	draft	version	of	the	protocol	they	implement
which	makes	it	slightly	annoying	to	run	tests.	Just	be	aware	so	that	your	client	and	server	agree	on	what	protocol	draft	they
implement.

9.1.	First,	make	sure	it	is	enabled
In	all	Firefox	versions	since	version	35,	released	January	13th	2015,	http2	support	is	enabled	by	default.

Enter	'about:config'	in	the	address	bar	and	search	for	the	option	named	“network.http.spdy.enabled.http2draft”.	Make	sure	it
is	set	to	true.	Firefox	36	added	another	config	switch	named	“network.http.spdy.enabled.http2”	which	is	set	true	by	default.
The	latter	one	controls	the	“plain”	http2	version	while	the	first	one	enables	and	disables	negotiation	of	http2-draft	versions.
Both	are	true	by	default	since	Firefox	36.

9.2.	TLS-only
Remember	that	Firefox	only	implements	http2	over	TLS.	You	will	only	ever	see	http2	in	action	with	Firefox	when	going	to
https://	sites	that	offer	http2	support.

9.3.	Transparent!

There	is	no	UI	element	anywhere	that	tells	that	you're	talking	http2.	You	just	can't	tell	that	easily.	One	way	to	figure	it	out,	is
to	enable	“Web	developer->Network”	and	check	the	response	headers	and	see	what	you	got	back	from	the	server.	The
response	is	then	“HTTP/2.0”	something	and	Firefox	inserts	its	own	header	called	“X-Firefox-Spdy:”	as	shown	in	the
screenshot	above.

The	headers	you	see	in	the	Network	tool	when	talking	http2	have	been	converted	from	http2's	binary	format	into	the	old-
style	HTTP	1.x	look-alike	headers.

http2	in	Firefox

24



9.4.	Visualize	http2	use
There	are	Firefox	plugins	available	that	help	visualize	if	a	site	is	using	http2.	One	of	them	is	“HTTP/2	and	SPDY	Indicator”.

http2	in	Firefox

25

https://addons.mozilla.org/en-US/firefox/addon/http2-indicator/


10.	http2	in	Chromium
The	Chromium	team	has	implemented	http2	and	provided	support	for	it	in	the	dev	and	beta	channel	for	a	long	time.	Starting
with	Chrome	40,	released	on	January	27th	2015,	http2	is	enabled	by	default	for	a	certain	amount	of	users.	The	amount
started	off	really	small	and	then	increased	gradually	over	time.

SPDY	support	was	removed	in	Chrome	51	in	favor	of	http2.	In	a	blog	post,	the	project	announced	in	February	2016:

“Over	25%	of	resources	in	Chrome	are	currently	served	over	HTTP/2,	compared	to	less	than	5%	over	SPDY.	Based
on	such	strong	adoption,	starting	on	May	15th	—	the	anniversary	of	the	HTTP/2	RFC	—	Chrome	will	no	longer
support	SPDY.”

10.1.	First,	make	sure	it	is	enabled
If	you	use	a	very	old	Chrome	version	you	may	want	to	check	if	the	support	is	there.

Enter	“chrome://flags/#enable-spdy4"	in	your	browser's	address	bar	and	click	“enable”	if	it	isn't	already	showing	it	as
enabled.	This	flag	has	been	removed	in	recent	version	and	the	support	is	now	always	implied.

10.2.	TLS-only
Remember	that	Chrome	only	implements	http2	over	TLS.	You	will	only	ever	see	http2	in	action	with	Chrome	when	going	to
https://	sites	that	offer	http2	support.

10.3.	Visualize	HTTP/2	use
There	are	Chrome	plugins	available	that	helps	visualize	if	a	site	is	using	HTTP/2.	One	of	them	is	“HTTP/2	and	SPDY
Indicator”.

10.4.	QUIC
Chrome's	current	experiments	with	QUIC	(see	section	12.1)	dilute	the	HTTP/2	numbers	somewhat.

http2	in	Chromium

26

https://blog.chromium.org/2016/02/transitioning-from-spdy-to-http2.html
https://chrome.google.com/webstore/detail/spdy-indicator/mpbpobfflnpcgagjijhmgnchggcjblin


11.	http2	in	curl
The	curl	project	has	been	providing	experimental	http2	support	since	September	2013.

In	the	spirit	of	curl,	we	intend	to	support	just	about	every	aspect	of	http2	that	we	possibly	can.	curl	is	often	used	as	a	test
tool	and	tinkerer's	way	to	poke	on	web	sites	and	we	intend	to	keep	that	up	for	http2	as	well.

curl	uses	the	separate	library	nghttp2	for	the	http2	frame	layer	functionality.	curl	requires	nghttp2	1.0	or	later.

Note	that	currently	on	linux	curl	and	libcurl	are	not	always	delivered	with	HTTP/2	protocol	support	enabled.

11.1.	HTTP	1.x	look-alike
Internally,	curl	will	convert	incoming	http2	headers	to	HTTP	1.x	style	headers	and	provide	them	to	the	user,	so	that	they	will
appear	very	similar	to	existing	HTTP.	This	allows	for	an	easier	transition	for	whatever	is	using	curl	and	HTTP	today.
Similarly	curl	will	convert	outgoing	headers	in	the	same	style.	Give	them	to	curl	in	HTTP	1.x	style	and	it	will	convert	them	on
the	fly	when	talking	to	http2	servers.	This	also	allows	users	to	not	have	to	bother	or	care	very	much	with	which	particular
HTTP	version	that	is	actually	used	on	the	wire.

11.2.	Plain	text,	insecure
curl	supports	http2	over	standard	TCP	via	the	Upgrade:	header.	If	you	do	an	HTTP	request	and	ask	for	HTTP	2,	curl	will
ask	the	server	to	update	the	connection	to	http2	if	possible.

11.3.	TLS	and	what	libraries
curl	supports	a	wide	range	of	different	TLS	libraries	for	its	TLS	back-end,	and	that	is	still	valid	for	http2	support.	The
challenge	with	TLS	for	http2's	sake	is	the	ALPN	support	and	to	some	extent	NPN	support.

Build	curl	against	modern	versions	of	OpenSSL	or	NSS	to	get	both	ALPN	and	NPN	support.	Using	GnuTLS	or	PolarSSL
you	will	get	ALPN	support	but	not	NPN.

11.4.	Command	line	use
To	tell	curl	to	use	http2,	either	plain	text	or	over	TLS,	you	use	the		--http2		option	(that	is	“dash	dash	http2”).	curl	defaults	to
HTTP/1.1	for	HTTP:	URLs	so	the	extra	option	is	necessary	when	you	want	http2	for	that.	For	HTTPS	URLs,	curl	will
attempt	to	use	http2.

11.5.	libcurl	options

11.5.1	Enable	HTTP/2

Your	application	would	use	https://	or	http://	URLs	like	normal,	but	you	set	curl_easy_setopt's		CURLOPT_HTTP_VERSION		option
to		CURL_HTTP_VERSION_2		to	make	libcurl	attempt	to	use	http2.	It	will	then	do	a	best	effort	and	do	http2	if	it	can,	but	otherwise
continue	to	operate	with	HTTP	1.1.

11.5.2	Multiplexing

As	libcurl	tries	to	maintain	existing	behaviors	to	a	far	extent,	you	need	to	enable	HTTP/2	multiplexing	for	your	application
with	the	CURLMOPT_PIPELINING	option.	Otherwise	it	will	continue	using	one	request	at	a	time	per	connection.

http2	in	curl

27

https://curl.haxx.se/
https://nghttp2.org/
https://curl.haxx.se/libcurl/c/CURLMOPT_PIPELINING.html


Another	little	detail	to	keep	in	mind	is	that	if	you	ask	for	several	transfers	at	once	with	libcurl,	using	its	multi	interface,	an
application	can	very	well	start	any	number	of	transfers	at	once	and	if	you	then	rather	have	libcurl	wait	a	little	to	add	them	all
over	the	same	connection	rather	than	opening	new	connections	for	all	of	them	at	once,	you	use	the	CURLOPT_PIPEWAIT
option	for	each	individual	transfer	you	rather	wait.

11.5.3	Server	push

libcurl	7.44.0	and	later	supports	HTTP/2	server	push.	You	can	take	advantage	of	this	feature	by	setting	up	a	push	callback
with	the	CURLMOPT_PUSHFUNCTION	option.	If	the	push	is	accepted	by	the	application,	it'll	create	a	new	transfer	as	an
CURL	easy	handle	and	deliver	content	on	it,	just	like	any	other	transfer.

http2	in	curl

28

https://curl.haxx.se/libcurl/c/CURLOPT_PIPEWAIT.html
https://curl.haxx.se/libcurl/c/CURLMOPT_PUSHFUNCTION.html


12.	After	http2
A	lot	of	tough	decisions	and	compromises	have	been	made	for	http2.	With	http2	getting	deployed	there	is	an	established
way	to	upgrade	into	other	protocol	versions	that	work	which	lays	the	foundation	for	doing	more	protocol	revisions	ahead.	It
also	brings	a	notion	and	an	infrastructure	that	can	handle	multiple	different	versions	in	parallel.	Maybe	we	don't	need	to
phase	out	the	old	entirely	when	we	introduce	new?

http2	still	has	a	lot	of	HTTP	1	“legacy”	brought	with	it	into	the	future	because	of	the	desire	to	keep	it	possible	to	proxy	traffic
back	and	forth	between	HTTP	1	and	http2.	Some	of	that	legacy	hampers	further	development	and	inventions.	Perhaps
http3	can	drop	some	of	them?

What	do	you	think	is	still	lacking	in	http?

12.1.	QUIC
Google's	QUIC	(Quick	UDP	Internet	Connections)	protocol	is	an	interesting	experiment,	performed	much	in	the	same	style
and	spirit	as	they	did	with	SPDY.	QUIC	is	a	TCP	+	TLS	+	HTTP/2	replacement	implemented	using	UDP.

QUIC	allows	the	creation	of	connections	with	much	less	latency,	it	solves	packet	loss	to	only	block	individual	streams
instead	of	all	of	them	like	it	does	for	HTTP/2	and	it	makes	connections	possible	to	be	done	over	different	network	interfaces
easily	-	thus	also	covering	areas	MPTCP	is	meant	to	solve.

QUIC	is	so	far	only	implemented	by	Google	in	Chrome	and	their	server	ends	and	that	code	is	not	easily	re-used	elsewhere,
even	if	there's	a	libquic	effort	trying	exactly	that.	The	protocol	has	been	brought	as	a	draft	to	the	IETF	transport	working
group.

After	http2

29

https://www.chromium.org/quic
https://github.com/devsisters/libquic
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-01


13.	Further	reading
If	you	think	this	document	was	a	bit	light	on	content	or	technical	details,	here	are	additional	resources	to	help	you	satisfy
your	curiosity:

The	HTTPbis	mailing	list	and	its	archives:	https://lists.w3.org/Archives/Public/ietf-http-wg/

The	actual	http2	specification	in	a	HTMLified	version:	https://httpwg.github.io/specs/rfc7540.html

Firefox	http2	networking	details:	https://wiki.mozilla.org/Networking/http2

curl	http2	implementation	details:	https://curl.haxx.se/docs/http2.html

The	http2	web	site:	https://http2.github.io/	and	perhaps	in	particular	the	FAQ:	https://http2.github.io/faq/

Ilya	Grigorik's	HTTP/2	chapter	in	his	book	“High	Performance	Browser	Networking”:	https://hpbn.co/http2/

Further	reading

30

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.github.io/specs/rfc7540.html
https://wiki.mozilla.org/Networking/http2
https://curl.haxx.se/docs/http2.html
https://http2.github.io/
https://http2.github.io/faq/
https://hpbn.co/http2/


14.	Thanks
Inspiration	and	the	package	format	Lego	image	from	Mark	Nottingham.

HTTP	trend	data	comes	from	https://httparchive.org/.

The	RTT	graph	comes	from	presentations	done	by	Mike	Belshe.

My	kids	Agnes	and	Rex	for	letting	me	borrow	their	Lego	figures	for	the	head	of	line	picture.

Thanks	to	the	following	friends	for	reviews	and	feedback:	Kjell	Ericson,	Bjorn	Reese,	Linus	Swälas	and	Anthony	Bryan.
Your	help	is	greatly	appreciated	and	has	really	improved	the	document!

During	the	various	iterations,	the	following	friendly	people	have	provided	bug	reports	and	improvements	to	the	document:
Mikael	Olsson,	Remi	Gacogne,	Benjamin	Kircher,	saivlis,	florin-andrei-tp,	Brett	Anthoine,	Nick	Parlante,	Matthew	King,
Nicolas	Peels,	Jon	Forrest,	sbrickey,	Marcin	Olak,	Gary	Rowe,	Ben	Frain,	Mats	Linander,	Raul	Siles,	Alex	Lee,	Richard
Moore

Thanks

31

https://httparchive.org/

	Introduction
	Background
	HTTP Today
	Things done to overcome latency pains
	Updating HTTP
	http2 concepts
	The http2 protocol
	Extensions
	An http2 world
	http2 in Firefox
	http2 in Chromium
	http2 in curl
	After http2
	Further reading
	Thanks

